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I.3 The Ingredients

- we have data x from measurement X and want to answer E and/or H
concerning Ψ
- how?
- we need a theory that allows us to reason from the data to answers, now
called inferences, to E and/or H
- if we could do this simply from x that would be ideal but ....
- so it would appear that we need more ingredients
- these ingredients are typically not determined by the application but
rather are chosen by the statistician and so are subjective
- of course, we want the minimal number of ingredients
- what criteria should these ingredients satisfy?
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bias
- as noted, the chosen ingredients are subjective and this is good, as it
allows for informed choices, but it also seems contrary to the ideals of
science
- can these ingredients be chosen, before seeing the data, in such a way,
that a desired answer can be produced (a foregone conclusion)? Yes (at
least with high probability)
- this will be called bias here and we will subsequently discuss how to
measure and control this
- so this concern about subjectivity can be dealt with
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falsi�ability
- what establishes the relevance, or lack of relevance, of the chosen
ingredients to the application
- if the data x is chosen correctly, then the data is considered objective
- the following principle is then invoked
- Principle of Empirical Criticism: each chosen ingredient must be checked
against the observed x as to its relevance
- this is basically an application of Popper�s idea that a theory is only
scienti�c if it can be falsi�ed by empirical data
- this rules out some ingredients, e.g., how do you falsify a loss/utility
function?
- losses/utilities may play a role in decisions but one can still state the
inferences that are evidence based only and, if the decision contradicts this
inference, one need only justify why
- lots of paradoxes involving utility so good to keep these out of the story
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Example The Allais Paradox
- Sure Thing Principle: if you prefer option A to B and you are presented
with the choice of fA and Cg or fB and Cg you will choose fA and Cg
- suppose presented with two contexts where you choose (a) or (b)

Context 1 (a) You receive $106 with probability 1.00. (b) You
receive $106 with probability 0.89, receive $2� 106 with
probability 0.10 and receive nothing with probability 0.01.

- Allais claims that most people would choose (a) to avoid the small
chance of getting nothing

Context 2 (a) You receive $106 with probability 0.11 and nothing
with probability 0.89. (b) You receive $2� 106 with probability
0.10 and nothing with probability 0.90.

- Allais claims that most people would choose (b) because the di¤erence in
the chance of receiving nothing is small and the payo¤ is greater with (b)
- the paradox: by the principle you should prefer (b) over (a) in Context 1
(C = You receive $106 with probability 0.89)
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Ingredient 1: the statistical model
- ffθ : θ 2 Θg a collection of prob. distributions and it is believed
(assumed) that fX 2 ffθ : θ 2 Θg
- here we will also require that the model parameter θ indexes the possible
distributions
- then there is θtrue 2 Θ such that fX = fθtrue
- also for the object of interest Ψ : Θ onto! Ψ (overload the notation) so
each possible distribution gives a potentially di¤erent value ψ = Ψ(θ) and
the true value is ψtrue = Ψ(θtrue )
- note - Ψ is a real-world object not just some mathematical construct
- the statistical model is falsi�able via model checking where we are
asking: is the observed x a reasonable value from at least one of the
distributions in ffθ : θ 2 Θg?
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- note - the statistical model is generally obviously wrong because it is
unrealistic to assume fX 2 ffθ : θ 2 Θg and when checking the model we
can never say the model is correct only that we have not obtained any
indication that it is substantially incorrect
- this brings up an important point about any of the ingredients speci�ed:

The purpose of the ingredients is to allow us to build a sound
theory that allows us to reason to answer E and/or H. They are
devices for this purpose and, while we care that their
incorrectness may lead us to make incorrect inferences, we don�t
want to obsess about their correctness to the extent that we
can�t build an appropriate theory.

The theory of statistical reasoning is more important than
the ingredients.

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html ()The Measurement of Statistical Evidence Lecture 1 - part 2 2021 7 / 16



Ingredient 2: the prior
- it will be argued that if we want a theory of inference that is based on
measuring evidence appropriately, then we need to specify a prior
probability distribution Π on Θ
- so for A � Θ the probability that θtrue 2 Θ is given by
Π(A) =

R
A π(θ) dθ

- what does this mean? answer: next lecture
- where does Π come from? it is a choice made by the statistician but it
must be based on an "elicitation" (to be discussed)
- Π induces a prior on Ψ, namely, for B � Ψ then
ΠΨ(B) = Π(Ψ�1B) =

R
B πΨ(ψ) dψ

- note - the conditional prior Π(� jψ) is a probability distribution
concentrated on Ψ�1fψg and characteristics that identify θ 2 Ψ�1fψg
are known as nuisance parameters
- by the multiplication rule π(θ) = π(θ jψ)πΨ(ψ)
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- we now have a joint (prior) probability model (θ, x) � π(θ)fθ(x)
- then when we observe x we invoke the �rst principle (or axiom) the
principle of conditional probability to replace the prior π by the posterior
of θ (the conditional distribution of θ given x)

π(θ j x) = π(θ)fθ(x)
m(x)

where
m(x) =

Z
Θ

π(θ)fθ(x) dθ

the marginal of x , also called the prior predictive of x (the dist. used to
make probability statements about x before it is observed)
- suppose T (x) is a (minimal) su¢ cient statistic for ffθ : θ 2 Θg so
fθ(x) = gθ(T (x))h(x), then m(x) = h(x)

R
Θ π(θ)gθ(T (x))) dθ and so

π(θ j x) = π(θ)fθ(x)
m(x)

=
π(θ)gθ(T (x))h(x)

h(x)
R

Θ π(θ)gθ(T (x)) dθ
=

π(θ)gθ(T (x))R
Θ π(θ)gθ(T (x)) dθ

so the posterior depends on the data only through the value T (x)
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- gθ can be taken to the density of T when θ is the true value and so

π(θ j x) = π(θ)gθ(T (x))
mT (T (x))

where
mT (t) =

Z
Θ

π(θ)gθ(t) dθ

is the prior predictive of T
- can a prior be falsi�ed? Yes
- Evans, M. and Moshonov, H. (2006) Checking for prior-data con�ict.
Bayesian Analysis, Volume 1, Number 4, 893-914, compute

MT (mT (t) � mT (T (x))

and if this is small T (x) lies in the tails of MT and is then an indication
that there is a problem with the prior
- this check presumes the model is correct, so check the model �rst and
then check the prior
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- the di¤erence δ that matters
- suppose ψ is a continuous parameter and we wish to assess the
hypothesis H0 : Ψ(θtrue ) = ψ0
- we know that we can only detect (absolute or relative) di¤erences of a
certain size as expressed via δ > 0 and distance measure d
- so the hypothesis we want to assess is H0 : d(Ψ(θtrue ),ψ0) � δ
- δ is primarily a product of the measurement process and presumably the
process is designed in such a way that achieving the accuracy desired is
possible
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Statistical Reasoning
- here is a sequence of steps to statistical reasoning concerning E and/or H

1 choose a model ffθ : θ 2 Θg
2 choose a prior π

3 measure bias and select the amount of data to collect to avos bias
4 collect the data
5 check the model (modify if necessary)
6 check the prior (modify if necessary)
7 derive the inferences (based on principles of inference to be discussed)
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Example binomial
- suppose we are interested in making inference about θ the proportion of
people infected with COVID-19 in Toronto and in particular want to assess
the hypothesis H0 : θ 2 [0.02, 0.05]
- the model x = (x1, . . . , xn)

i .i .d .� Bernoulli(θ) with θ 2 [0, 1] so
T (x) = nx̄ = ∑n

i=1 xi � binomial(n, θ) is a mss
- the prior θ � beta(α0, β0) distribution where α0 and β0 are speci�ed
hyperparameters that need to be elicited
- one possible elicitation algorithm: specify an interval (a, b) such that it
is known that θ2(a, b) with virtual certainty, e.g., Π((a, b)) = 0.99 and
pick a point for the mode in (a, b) such as (a+ b)/2
- this determines α0 and β0
- so if a = 0 and b = 0.25, then α0 = 8.86 and β0 = 56.05
- the next step is to measure bias and for this we need to discuss how
evidence will be measured
- the posterior of θ is beta(α0 + nx̄ , β0 + n(1� x̄))
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- bias
- we need to specify how to measure evidence �rst
- principle of evidence: evidence in favor of H0 is found if
Π([0.02, 0.05] j nx̄) > Π([0.02, 0.05]) which occurs i¤

Beta([0.02, 0.05], α0 + nx̄ , β0 + n(1� x̄)) > Beta([0.02, 0.05], α0, β0)

where Beta is the probability measure and evidence against is found if
Π([0.02, 0.05] j nx̄) < Π([0.02, 0.05])
- there is bias against H0 when the prior probability of getting evidence not
in favor of H0, when it is true, is large
- so we need to compute

sup
θ2[0.02,0.05]

M
�
Beta([0.02, 0.15], α0 + nx̄ , β0 + n(1� x̄)) �
Beta([0.02, 0.15], α0, β0)

���� θ

�
and and note M(� j θ) is the binomial(n, θ) measure
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- there is bias in favor of H0 when the prior probability of getting evidence
not against H0, when it is false, is large
- so we need to compute

sup
θ /2[0.02,0.05]

M
�
Beta([0.02, 0.15], α0 + nx̄ , β0 + n(1� x̄)) �
Beta([0.02, 0.15], α0, β0)

���� θ

�
- determine n so that both biases are small as biases ! 0 as n! ∞
- model checking
- compute a test statistic S(x1, . . . , xn) and compare the observed value
with its conditional distribution given T (x1, . . . , xn)
- runs tests
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- checking for prior-data con�ict

mT (t) =
Γ(n+ 1)

Γ(t + 1)Γ(n� t + 1)
Γ(α0 + β0)

Γ(α0)Γ(β0)
Γ(t + α0)Γ(n� t + β0)

Γ(n+ α0 + β0)

so compute

MT

�
Γ(t + α0)Γ(n� t + β0)

Γ(t + 1)Γ(n� t + 1) � Γ(T (x) + α0)Γ(n� T (x) + β0)

Γ(T (x) + 1)Γ(n� T (x) + 1)

�
and this is easily computed by generating θ � beta(α0, β0) and then t �
binomial(n, θ) many times
- inference
- there is evidence in favor H0 if Π([0.02, 0.05] j nx̄) > Π([0.02, 0.05])
- and evidence against H0 if Π([0.02, 0.05] j nx̄) < Π([0.02, 0.05])
- what about the strength of this evidence? record the posterior probability
Π([0.02, 0.05] j nx̄)
- if there is evidence in favor and this posterior prob. is large, there is
strong evidence in favor while if there is evidence against and this posterior
prob. is small, there is strong evidence against
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